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Abstract

This poster introduces a novel self-consistency clustering algorithm (K-Tensors) designed for
positive-semidefinite matrices based on their eigenstructures. As positive semi-definite matrices
can be represented as ellipses or ellipsoids in &P, p > 2, it is critical to maintain their structural
information to perform effective clustering. However, traditional clustering algorithms often vec-
torize the matrices, resulting in a loss of essential structural information. To address this issue, we
propose a clustering algorithm involving the following concepts:

= Projection of Positive Semi-Definite Matrix
= Distance Metric Based on Eigenstructure of Positive Semi-Definite Matrices
= Self-Consistency Clustering Algorithms

This innovative approach to clustering positive semi-definite matrices has broad applications in
several domains, including financial and biomedical research, such as analyzing functional con-
nectivity data. By maintaining the structural information of positive semi-definite matrices, our
proposed algorithm promises to cluster the positive semi-definite matrices in a more meaningful
way, thereby facilitating deeper insights into the underlying data in various applications.

Preliminaries: Self-Consistency and Self-Consistency Algorithm

Hastie and Stuetzle [1989] introduced a self-consistent curve or principal curve to provide a
curve summary of the data. Let X € P be a random vector with density A and finite second
moments assuming £(X ) = 0. Let f denote a smooth C'°° unit-speed curve in RP. the projection
index A\¢ : RP — R is defined as:

Ae() = sup 0+ [ = OV = int | £ |

The projection index Ag(x) of x is the value of A for which f(\) is closest to x. Then f is called
self-consistent or principal curve of h if £(X|\(X)) = f(A) for a.e. A

Tarpey [1999] presented the self-consistency algorithm, which can be viewed as a general-
ization of the K-means algorithm. Let & C RP be a measurable set and define the domain of
attraction of a pointy € &, denoted by Dy (S):

Dy(S)i= {x € R [x =] < [x— 2z e Sz £y}

This set represents the domain of attraction of y towards the points in S, containing all the
points in S that is closer to y than to any other point z in S.

Preliminaries: Common Principal Components

Flury [1984] proposed the concept of common principal components as an extension to prin-
cipal components analysis. This approach assumes that n groups share the same principal
component axes, This method can be formulated as an optimization problem:

n [ det (diag (BT\I!Z-B))

minimize
B Pl det (BT\I!Z-B)
subject to BB = I

Where W, is covariance matrix of each subpopulation. Different approaches for estimating the
common principal components have been proposed by Flury and Gautschi [1986], Vollgraf and
Obermayer [2006], and Hallin et al. [2014]. These methods use maximum likelihood estimation
(MLE) and S-estimation to estimate the common principal components from the positive semi-
definite matrices.
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Some Notation

* Vy(RP) = {X € RP*1: Xty = I,}: the set of all orthonormal g-frames in RP

» S = {X e RP*P|X = X1, X = 0}: the set of all positive semi-definite matrices in RP*P

= PP ={X € RPP|X = (alT) oI, a e R’ a > 0} the set of all diagonal matrices in R&P*P
with only non-negative elements

Here, I is the identity matrix, 1 is the vector with all elements equal to 1, and o represents
Hadamard product.

Projections, Principal Positive Semi-Definite Tensors, and Principal
Positive Semi-Definite Matrices

We assume that there exists a random positive semi-definite matrix ¥ &€ Sﬁ, with a probability
density function denoted by f. Additionally, we consider a p-frame orthonormal matrix B €
Vp(RP) in \P and define the projection of the random matrix ¥ onto B as follows:

Pp(¥) = BAg(¥)B',

where Ag(¥) = (B! UB) o1 ¢ 2" is a diagonal matrix that depends on the random matrix ¥,
ogiven a fixed B. This projection allows us to determine the proportion of the random positive
semi-definite matrix W that can be explained by the orthonormal frame B.

Domain of Attraction to an Orthonormal Basis

Let A C SE be a subset of all positive semi-definite matrices. We define Dg(.A) the domain of
attraction of B with respect to the subset of positive semi-definite matrices A as follow:

DlA) = { ¥ € S | — Ppl®)[ < inf [ ¥ - PAGY[} A £ B,A € V()|

where || - I|% s the squared Frobenius norm. The domain of attraction toward an orthonormal
basis matrix B is defined as the matrices that can be better diagonalized by orthonormal matrix
B compared to any other orthonormal matrix A. Pg(W¥) is another representation of principal or
self-consistent positive semi-definite tensors. We are able to identify the domain of attraction of
B by analyzing the differences between W and its corresponding slice on the principal positive
semi-definite tensor.

K-Tensors: Algorithm for Clustering Positive Semi-Definite Matrices

Algorithm 1: K-Tensors: Clustering Positive Semi-Definite Matrices

Set 1= 0.
Start with an initial K partition of the data: DBQIA)

while i > 1 and Loss® # Loss'~! do

forl <k < Kdo
estimate common principal components for each group and update B,; by
2 . 2
B, = sup {Bk @ — P, (9)] = in @ —Pp, ()% IBT € Vp(RP), By, # Br}
B[ % b
obtain the new assignment for each observation and update DBH.(A) by
2 . 2
DBki — {\Ij S Sp y - II\II o 7DB]{(\II)IIF < lélf II\IJ T PBT(\II)IIFHBT 7é BkaB?“ S Vp(%p)}
calculate the loss of this iteration by Loss’ = S°% , 2521 |, — P+ 1(i € k)II%
kl
end
end
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Definition: Principal Semi-Positive Tensors

Define a mapping from a diagonal matrix to a positive semi-definite matrix for a given B &
Vp(RP): Ug(A) = BAB! : 2V — SE. We call Ug(A) the principal, or self-consistency positive
semi-definite tensors of fif Ug(A) =E(P|B(¥) =B,A(¥)=A) fora.e. A.

Simulation Studies

We evaluate the performance of our K-tensors algorithm in two simulation settings. In the first
setting, we follow the structure proposed in Cook and Forzani [2008], where each functional
connectivity matrix ¥; is modeled as W;cc, = UkAZ-UZ + E,;. Here, ¥; and E; are positive semi-
definite matrices, A; is a diagonal matrix, and Uy is an orthonormal matrix representing the latent
subpopulations.

In the second simulation setting, we consider the Wishart distribution with degree of freedom
from 10 to 45. In both settings, we assume 2 underlying true clusters, with each cluster consisting
of 50 observations.
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(a) Cook and Forzani [2008] Settings

E||E;|| from 0.1 to 0.6

(b) Wishart Distribution Settings

df from 10 to 45
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